Saturday, November 7, 2009

Caught In The Act: Butterfly Mate Preference Shows How One Species Can Become Two


Breaking up may actually not be hard to do, say scientists who've found a population of tropical butterflies that may be on its way to a split into two distinct species.

The cause of this particular break-up? A shift in wing color and mate preference.

In a paper published this week in the journal Science, the researchers describe the relationship between diverging color patterns in Heliconius butterflies and the long-term divergence of populations into new and distinct species.

"Our paper provides a unique glimpse into the earliest stage of ecological speciation, where natural selection to fit the environment causes the same trait in the same population to be pushed in two different directions," says Marcus Kronforst, a Bauer Fellow in the Center for Systems Biology at Harvard University who received his doctor's degree at The University of Texas at Austin. "If this trait is also involved in reproduction, this process can have a side effect of causing the divergent subpopulations to no longer interbreed. This appears to be the process that is just beginning among Heliconius butterflies in Ecuador."

Heliconius butterflies display incredible color pattern variation across Central and South America, with closely related species usually sporting different colors. In Costa Rica, for example, the two most closely related species differ in color: One species is white and the other is yellow. In addition, both species display a marked preference to mate with butter-flies of the same color.

The Ecuadorian population examined by Kronforst and his colleagues shows the same white and yellow variation found in Costa Rica but has not yet reached a level of strong reproductive isolation. The entire population lives in close proximity and individuals of both colors come in contact with -- and mate with -- each other.

But, by studying the Ecuadorian population in captivity, the scientists found the two colors do not mate randomly. Despite the genetic similarity between the groups -- white and yellow varieties differ only at the color-determining gene -- yellow Ecuadorian individuals show a preference for those of the same color. White male butterflies, most of which are heterozygous at the gene that controls color, show no color preference.

"This subtle difference in mate preference between the color forms in Ecuador may be the first step in a process that could eventually result in two species, as we see in Costa Rica," says Kronforst, who began studies of Heliconius color pattern and behavioral genetics in the laboratory of Professor Lawrence Gilbert at The University of Texas at Austin.

Previous studies of species formation have focused on the characteristics of well-differentiated species, and the health and viability of their hybrids in particular, in an effort to identify how the species may have emerged and how they stay distinct.

Heliconius provides a model for a different kind of study. The researchers considered species emergence from the opposite end, studying populations that have yet to diverge into separate species in order to identify the role of mate choice in the potential emergence of new species.

Having identified color-based mate preference in Heliconius, the researchers used a battery of genetic markers to compare the genomes of the white and yellow varieties, showing that they are genetically identical except for their different colors and preferences.

Their work suggests that the genes for color and preference are very close to one another in the genome; the two traits could even be caused by the same gene. Their next step is to identify the gene (or genes) responsible for the differences in color and mate preference.

"If we can identify this gene or genes, we can say conclusively how they influence both color and mate choice," says Kronforst. "Subsequent work could elucidate exactly how changes in individual genes can, over long periods of time, lead to novel species."

"This study shows the great potential of the genus Heliconius as a model system for integrating genetics, development, behavior, ecology and evolution," says Gilbert, professor in the Section of Integrative Biology. "It is the culmination of diverse contributions of the co-authors involving insectary, field and laboratory research over more than a decade."

Co-authors on the Science paper with Kronforst are Nicola L. Chamberlain and Ryan I. Hill, both of Harvard; Durrell D. Kapan of the University of Hawaii; and Lawrence E. Gilbert of The University of Texas at Austin. Their work was funded by the National Science Foundation and the National Institutes of Health.

Friday, November 6, 2009

Biological Clocks Discovery Overturns Long-held Theory


University of Michigan mathematicians and their British colleagues say they have identified the signal that the brain sends to the rest of the body to control biological rhythms, a finding that overturns a long-held theory about our internal clock.

Understanding how the human biological clock works is an essential step toward correcting sleep problems like insomnia and jet lag. New insights about the body's central pacemaker might also, someday, advance efforts to treat diseases influenced by the internal clock, including cancer, Alzheimer's disease and mood disorders, said University of Michigan mathematician Daniel Forger.

"Knowing what the signal is will help us learn how to adjust it, in order to help people," said Forger, an associate professor of mathematics and a member of the U-M's Center for Computational Medicine and Bioinformatics. "We have cracked the code, and the information could have a tremendous impact on all sorts of diseases that are affected by the clock."

The body's main time-keeper resides in a region of the central brain called the suprachiasmatic nuclei, or SCN. For decades, researchers have believed that it is the rate at which SCN cells fire electrical pulses---fast during the day and slow at night---that controls time-keeping throughout the body.

Imagine a metronome in the brain that ticks quickly throughout the day, then slows its pace at night. The rest of the body hears the ticking and adjusts its daily rhythms, also known as circadian rhythms, accordingly.

That's the idea that has prevailed for more than two decades. But new evidence compiled by Forger and his colleagues shows that "the old model is, frankly, wrong," Forger said.

The true signaling mechanism is very different: The timing signal sent from the SCN is encoded in a complex firing pattern that had previously been overlooked, the researchers concluded. Forger and U-M graduate student Casey Diekman, along with Dr. Mino Belle and Hugh Piggins of the University of Manchester in England, report their findings in the Oct. 9 edition of Science.

To test predictions made by Forger and Diekman's mathematical model, the British scientists collected data on firing patterns from more than 400 mouse SCN cells. The U-M scientists then plugged the experimental results into their model and found that "the experimental data were almost exactly what the model had predicted," Forger said.

Though the experiments were done with mice, Forger said it's likely that the same mechanism is at work in humans, since timekeeping systems are similar in all mammals.

The SCN contains both clock cells (which express a gene call per1) and non-clock cells. For years, circadian-biology researchers have been recording electrical signals from a mix of both types of cells. That led to a misleading picture of the clock's inner workings.

But Forger's British colleagues were able to separate clock cells from non-clock cells by zeroing in on the ones that expressed the per1 gene. Then they recorded electrical signals produced exclusively by those clock cells. The pattern that emerged bolstered the audacious new theory.

"This is a perfect example of how a mathematical model can make predictions that are completely at odds with the prevailing views yet, upon further experimentation, turn out to be dead-on," Forger said.

The researchers found that during the day, SCN cells expressing per1 sustain an electrically excited state but do not fire. They fire for a brief period around dusk, then remain quiet throughout the night before releasing another burst of activity around dawn. This firing pattern is the signal, or code, the brain sends to the rest of the body so it can keep time.

"The old theory was that the cells in the SCN which contain the clock are firing fast during the day but slow at night. But now we've shown that the cells that actually contain the clock mechanism are silent during the day, when everybody thought they were firing fast," Diekman said.

Piggins said the findings "force us to completely reassess what we thought we knew about electrical activity in the brain's circadian clock." In addition, the results demonstrate the importance of interdisciplinary collaborative research, he said.

"This work also raises important questions about whether the brain acts in an analog or a digital way," Belle said.

Thursday, November 5, 2009

Learning To Talk Changes How Speech Is Heard: 'Sound Of Learning' Unlocked By Linking Sensory And Motor Systems


Learning to talk also changes the way speech sounds are heard, according to a new study published in Proceedings of the National Academy of Sciences by scientists at Haskins Laboratories, a Yale-affiliated research laboratory. The findings could have a major impact on improving speech disorders.

"We've found that learning is a two-way street; motor function affects sensory processing and vice-versa," said David J. Ostry, a senior scientist at Haskins Laboratories and professor of psychology at McGill University. "Our results suggest that learning to talk makes it easier to understand the speech of others."

As a child learns to talk, or an adult learns a new language, Ostry explained, a growing mastery of oral fluency is matched by an increase in the ability to distinguish different speech sounds. While these abilities may develop in isolation, it is possible that learning to talk also changes the way we hear speech sounds.

Ostry and co-author Sazzad M. Nasir tested the notion that speech motor learning alters auditory perceptual processing by evaluating how speakers hear speech sounds following motor learning. They simulated speech learning by using a robotic device, which introduced a subtle change in the movement path of the jaw during speech.

To assess speech perception, the participants listened to words one at a time that were taken from a computer-produced continuum between the words "had" and "head." In the speech learning phase of the study, the robot caused the jaw to move in a slightly unusual fashion. The learning is measured by assessing the extent to which participants correct for the unusual movement.

"Its like being handed a two-pound weight for the first time and being asked to make a movement, it's uncomfortable at first, but after a while, the movement becomes natural," said Ostry. "In growing children, the nervous system has to adjust to moving vocal tract structures that are changing in size and weight in order to produce the same words. Participants in our study are learning to return the movement to normal in spite of these changes. Eventually our work could have an impact on deviations to speech caused by disorders such as stroke and Parkinson's disease."

"Our study showed that speech motor learning altered the perception of these speech sounds. After motor learning, the participants heard the words differently than those in the control group," said Ostry. "One of the striking findings is that the more motor learning we observed, the more their speech perceptual function changed."

Ostry said that future research will focus on the notion that sensory remediation may be a way to jumpstart the motor system.

The team previously found that the movement of facial muscles around the mouth plays an important role not only in the way the sounds of speech are made, but also in the way they are heard.

Haskins Laboratories was founded in 1935 by the late Dr. Caryl P. Haskins. This independent research institute has been in New Haven, Connecticut since 1970 when it formalized affiliations with Yale University and the University of Connecticut. The Laboratories' primary research focus is on the science of the spoken and written word.